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What is Immune Monitoring?

Defining immune correlates of clinical responses,
understanding the specificity of anti-tumor immune responses,
understanding why treatments fail,
improving therapy from an informed perspective

Immune monitoring encompasses several fields

Immunology (defining myeloid and lymphoid compartments)

Pathology (immune infiltrates, heterogeneity of antigen expression)

Genomics and proteomics (correlates, predictive signatures)

Imaging (follow up effectors in vivo)

Focus on cellular and humoral immune responses



Importance of immune monitoring of T and B cell responses in cancer patients

Define the spontaneous immunogenicity of tumors

Prognostic or diagnostic potential of immune responses

Predictive potential of immune responses to therapy:
correlates of clinical response

Follow changes in immunity to assess intended
and unintended effects of treatment — Compare trials to each other

“You won’t know how to vaccinate until you know how to immunize.
And you won’t know how to immunize until you know how to monitor.”
Lloyd J. Old



Overview of presentation

Spontaneous vs. immunotherapy generated T and B cell responses

Techniques for monitoring T and B cells

Quantification vs. quality

EXx vivo vs. in vitro sensitization

Periphery vs. in situ

Correlation of immune responses with clinical events

Example of immunomonitoring of a cancer vaccine trial with NY-ESO-1 OLP

Future directions



Selection of techniques available for monitoring T and B cells

Historically:

* T cell quantification by cytokine release in supernatant (ELISA)
e CTL (CD8) by 5'"Chromium Release Test

* Th (CD4) proliferation by 3H-Thymidine Incorporation Assay

* Ab (B cells) by ELISA

Single cell level immune monitoring
ELISPOT (B and T cells)
Flow cytometry — Time-of-Flight mass spectrometry — Cell sorting

Intracellular Staining of Cytokines — Phosphoflow — Tetramers

Advantages Limitations

* High sensitivity * Antigen may need to be identified
* Quantitative * Technically more challenging

* May distinguish subpopulations e Can be expensive

e Efforts to harmonize methods



Selection of techniques available for monitoring T and B cells

Comprehensive immune monitoring
Phenotyping of populations
Multiplex assays for cytokines
Immunogenomics of T and B cells
TCR and BCR sequencing
Seromics (protein array profiling of antibodies)

Immunohistochemistry and imaging of T and B cells (Immunoscore)

Advantages Limitations

* Suitable for immunotherapies where * Not necessarily cancer-specific
target antigen is not defined e Costly
* Discovery tool for broad correlations « Complex to analyze - TMI



Quantitative vs. Qualitative Immune Monitoring

Is the immune response detectable? Relevant? Efficient?

Qualitative aspects measured

Specificity — Example: Distinguish his-tag specific responses
from antigen-specific responses following protein vaccine

Avidity or titer (serial dilution of target antigen or epitope
amount required for minimal reactivity) — Tumor recognition

Polyfunctionality
(ability to produce multiple cytokines, various effector functions)

Polyclonality
(epitope mapping within an antigen)

Surface markers related to function
(memory, naive, effector, central, periphery, tissue homing,
activation [ICOS, 4-1BB, OX40], suppression [CTLA-4, PD1])

Immunohistochemistry and imaging of T and B cells (Immunoscore)



Phenotypic vs. functional analyses of T cells

Surface markers may inform on the type of cells
but ultimate functional tests may be required
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Ex vivo vs. in vitro sensitization for CD8* and CD4* T cell responses:
Example for NY-ESO-1 CD8* T cell responses

NY-ESO-1 overlapping peptides or
NY-ESO-1-recombinant vector

W‘ IL2 +IL7
10-20 days

IFNy

NY-ESO-1 overlapping peptides or
NY-ESO-1-recombinant vector
(preferentially different vector from
the one used for sensitization)

Autologous APC  CD8* or Effector Autologous
Selection with tic bead - - + : _
coated with antCD8 or anti-CD4 (CD&/CD4)  CD4*T cell EBV-B or T-APC
Tetramers in PBMC ELISPOT Tetramers in Tumors
PMBC ex vivo After IVS Sensitization TILs ex vivo Ascites ex vivo
- T Ale 2z
0.0% | © 30.0% None (ex vivo) =
SR ' i s 5 ;9
© ESO-1 157-165 o I 3.
(m) = A E EZ
2 cF 4
Matrix 58-66 2
! 10 ' % © TR T
Q"”Q‘\d S
HLA-A2 / NY-ESO-1 p157-165 We @o'\ 2 HLA-Cw3 / NY-ESO-1 p92-100
Tetramer Tetramer
Targets
TCR RECOGNITION IFNy RELEASE TCR RECOGNITION

Difficult to detect ex vivo from PBMC unless strong viral epitope (CMV, EBV),
analog peptide of differentiation antigens (gp100, Melan-A)

Gnijatic et al. Proc Natl Acad Sci U S A. 2000;97:10917-22



Ex vivo vs. in vitro sensitization for CD8* and CD4* T cell responses:
Pros and Cons

Ex vivo monitoring

Advantages

* Quantitative

* Phenotype of antigen-specific cells
unmodified by cell culture
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Ayyoub et al. Proc Natl Acad Sci U S A. 2010;107:7437—-42.

Limitations
* Requires many cells
(>107 for a single tetramer staining)
e Difficult to perform multiple
specificity controls
» Tetramers not always available
* Results can be questionable if
too close to sensitivity threshold

In vitro sensitization

Advantages

* Fewer cells needed
from precious clinical samples

» Clear yes/no detection without
de novo induction of T cells

* Allows for multiple specificity
controls and targets

* Independently assess CD8 and CD4

Limitations
* Semi-quantitative
e Cell culture may modify phenotype



Where to monitor? Periphery or tissue?

In situ monitoring

Advantages Limitations

* Most relevant: at tumor site * Generally not accessible

* Phenotype of antigen-specific cells * Not enough cells to test
unmodified by cell culture * Quality of tissue

» Heterogeneity and sampling bias

Peripheral blood

Advantages Limitations

» Systemic * May not reflect tumor environment
» Easy access » Potentially rarer precursors

» Sufficient amounts * Representative or not?

* No biopsy needed



Intraepithelial CD8* TILs and a high CD8*/Treg ratio
are associated with favorable prognosis in ovarian cancer
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Immunoscore: Type, density, and location of immune cells
within human colorectal tumors predict clinical outcome
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Why monitor when patients with measurable immunity still have cancer?

Majority of trials fail to show correlation
between immune responses and clinical responses

Humoral and cellular immunity may be insufficient or happen too late

Escape mechanisms of the tumor from immunosurveillance

Influence of heterogeneity of antigen expression

Active mechanisms of immunosuppression, especially at the tumor site

Co-inhibitory molecules, regulatory T cells

Maybe correlation with immune responses will become more evident
with immunotherapeutic drugs able to provide better clinical benefit



Correlations between immune responses and clinical outcome
Ogi C & Aruga A. Oncoimmunology. 2013;2:26012

Table 3. Evaluation of immune response and clinical outcome after therapeutic cancer vaccines by log-rank test using the Kaplan-Meier model
Positive

Product Cancer Phase Evaluation results . Reference
Correlation
P TTP correlated with development of an immune response to prostatic Y 29
acid phosphatase (PAP) and with the dose of dendritic cells received.
An antibody titer of more than 400 against PA2024 or PAP after
Provenge® Prostate baseline lived longer than did those who had an antibody
i P titer of 400 or less (p < 0.001 and p = 0.08, respectively). Y .
(IMPACT) No survival difference could be detected between patients
in the sipuleucel-T group who had T-cell proliferation
response to PA2024 or PAP and those who did not.
5-y OS rate was 75% for patients who had an elevated level of
Melanoma Pl anti-TA90 IgM and a strong DTH response, 36% for patients who Y 30
(Stage IV) had either an elevated lgM response or a strong DTH response,
and only 8% if neither response was strong (p < 0.001)
in®
e Melanoma Pl Anti-TA90 IgM levels = 1:800 were significantly corre- Y 30
(Stage ll) lated with improved 5-y DFS and improved 5-y OS.
Melanoma (Stage After Pl Survival correlated significantly with delayed cutaneous hyper- Y 31
lllaand IV) = sensitiity (p = 0.0066) and antibody response (p = 0.0117).
= g There was no correlation observed between the devel-
SpeciﬁdTM ot A opment of anti-ld immune response and the achieve- N 33

R ment of an objective response or duration of EFS.

Small cell The survival of responders was better than that of non-responders,
BEC2 luna cancer Pl although this did not reach statistical significance (median survival, Y 21
9 19.2 v 13.9 mo for responders v non-responders; p = 0.0851).



Association with survival in DC + autologous lysate vaccine
in glyoblastoma patients (GBM)
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Multipeptide immune response to cancer vaccine IMA901 after
single-dose cyclophosphamide associates with longer patient survival

Cyclophosphamide
(300 mg m™2 as
single infusion)

Advanced RCC (n = 68)
— HLA-A*02*
— Prior cytokine or TKI therapy

P
O

IMA901 plus GM-CSF (i.d.)

— Measurable lesion(s) \ .
— Documented progression IMA901 plus GM-CSF (i.d.)
17 vaccinations over 9 months Follow up for OS
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Overall survival of subjects with no detectable
immune responses (n = 22), immune responses

to one tumor-associated peptide (TUMAP) (n = 23),
two TUMAPs (n = 14), or at least three TUMAPs (n = 2)

Adapted by permission from Macmillan Publishers Ltd: Nature Medicine. 2012;18:1254 ©



Sporadic evidence of changes in NY-ESO-1 serum antibody
with clinical course following anti-CTLA-4 or other therapies

Ovarian carcinoma combination
immunotherapy with CTLA-4 blockade
and irradiated autologous tumor cells
engineered to secrete GM-CSF (GVAX)
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Hodi FS et al. PNAS 2008;105:3005-3010.

Prostate cancer combination immunotherapy
with CTLA-4 blockade and GM-CSF
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curative resection of a NY-ESO-1

expressing primary tumor (Western blot)

Jager E et al. Int. J. Cancer. 1999;84:506-510 kDa

NW692

16 -
Dle @

11/97 7/98 Co



Correlation of NY-ESO-1 antibody with clinical course

following anti-CTLA-4 treatment with ipilimumab

In collaboration with Jedd Wolchok and Jim Allison MSKCC/Ludwig Center and with
Ruth Halaban and Mario Sznol, Yale University - Melanoma sera

Patients with NY-ESO-1 antibodies before CTLA-4 treatment

5 erfere NY-ESO-1 NY-ESO-1
Status at wk 24 (%) SERONEGATIVE SEROPOSITIVE
# (%) # (%)

CR 4 (2.9%) 3 1

PR 14 (10.0%) 10 4

SD 30 (21.4%) 23 7
Clinical Benefit 48 (34.3%) 36 (30.5%) 12 (54.6%)
No Clinical Benefit | 92 (65.7%) 82 (69.5%) 10 (45.4%)

Total 140 (100%) 118 22

According to Immune-related response criteria:
Clinical Benefit

CR: Complete Response
PR: Partial Response
SD: Stable Disease

No Clinical Benefit

POD: Progression of Disease (includes MR: mixed response)
DOD: Dead of Disease

Yuan, Gnjatic et al. Proc Natl Acad Sci U S A. 2011;108:16723

Fisher's exact test
(two-tailed):
Pvalue 0.0481
RR=1.8(1.1-2.9)



Seromics: Methodology for antibody profiling with protein microarrays

Array featuring ‘ :
multiple proteins )

\\S\:E}i’

From Invitrogen.com

Incubate with
patient serum (1:500)

Reveal antigen-specific
serum antibodies with
labeled anti-human IgG

Arrays may contain >9000 proteins mostly full-length baculovirus-produced
GST-fusion proteins randomly selected, both known and predicted sequences




Phase | study LUD2006-001 / MSK07-152: Immunization Schedule
(PI: Paul Sabbatini, Clinical trial NCT00616941)

Epithelial ovarian cancer patients in 2" or 3 complete remission (NY-ESO-1 expression optional)
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Summary of immune responses in OLP vaccination (cin cancer Res. 2012:18:6497-508)

Antibody CD8* T Cell Response CD4* T Cell Response
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Antibody and CD4 T cell responses to
NY-ESO-1 Overlapping Long Peptides vaccination
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Sabbatini, Tsuiji et al. Clin Cancer Res. 2012;18:6497-508



Mapping of epitopes recognized by antibody and CD4* T cells after vaccination with OLP
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Change of Th1/Th2 balance of NY-ESO-1-specific CD4+ T cells by vaccination
with OLP with or without montanide and/or poly IC at week 13/16
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Recognition of naturally-processed NY-ESO-1 protein by CD4+ T cell lines from samples
before and after vaccination with OLP with or without montanide and/or poly IC
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Tsuji et al. Cancer Immunology Research, 2013;1:340-350



Analyzing the avidity of CD4+ T cell lines for the recognition of individual peptides
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Analyzing the quality of CD8* T cell lines
for the recognition of naturally processed NY-ESO-1

NY-ESO-1-specific CD8* T cell line
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VvV: recombinant vaccinia virus



Measuring Tregs:
Effect of depleting CD4*CD25* T cells from CD4+ T responses against NY-ESO-1
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Comparative summary of cohorts from NY-ESO-1 overlapping peptide vaccine

Integrated Ab,
Cohort CD8 CD4 CD4 and CD8
responses
1: OLP alone 1/4 1/4 4/4 1/4
2: OLP+Montanide 6/13 9/13 12/13 4/13
3: OLP+Montanide+Poly-ICLC 10/11 10/11 11/11 10/11

Cohort 3 patients with NY-ESO-1 expression (n=5)
-+ Cohort 3 patients without NY-ESO-1 expression (n=5)

100

Delayed time-to-progression =0

in Cohort 3 patients with

NY-ESO-1 tumor expression 2y

40

20- e :

Percentage without progression

0 10 20 30
Months (time to progression)
Sabbatini, Tsuiji et al. Clin Cancer Res. 2012;18:6497-508



Lessons learned and take home message — Key points and impact on field

Large array of methodologies available to study immune cells
at the single cell level or in a comprehensive systemic manner

Immune monitoring of T and B cells can guide and inform
future immunotherapy designs

Importance of defining parameters for optimal understanding of immunotherapy:
In situ vs. periphery, ex vivo vs. in vitro sensitization, quality of responses

Limitations: Despite new tools such as HLA class Il tetramer,
challenging to study suppressive mechanisms in the antigen-specific setting

With more clinical benefit achieved by immunotherapy,
expectation that immunological correlates will become important for prediction



Future directions

Microbiome

Single-cell genomics

Integration with systems biology and bioinformatics

Plasticity, ontogeny of immune cells — Variability over time

In situ specificity (tetramers for IHC, microdissection and functional analyses)
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